# Introduction to Finite Element Method Introductory Course on Multiphysics Modelling

### TOMASZ G. ZIELIŃSKI

multiphysics.ippt.pan.pl

Institute of Fundamental Technological Research of the Polish Academy of Sciences

Warsaw • Poland



- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis

- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis
- 2 Strong and weak forms
  - Model problem
  - Boundary-value problem and the strong form
  - The weak form
  - Associated variational problem

- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis
- 2 Strong and weak forms
  - Model problem
  - Boundary-value problem and the strong form
  - The weak form
  - Associated variational problem
- 3 Galerkin method
  - Discrete (approximated) problem
  - System of algebraic equations

- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis
- 2 Strong and weak forms
  - Model problem
  - Boundary-value problem and the strong form
  - The weak form
  - Associated variational problem
- 3 Galerkin method
  - Discrete (approximated) problem
  - System of algebraic equations
- 4 Finite element model
  - Discretization and (linear) shape functions
  - Lagrange interpolation functions
  - Finite element system of algebraic equations
  - Imposition of the essential boundary conditions
  - Results: analytical and FE solutions

- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis
- 2 Strong and weak forms
  - Model problem
  - Boundary-value problem and the strong form
  - The weak form
  - Associated variational problem
- 3 Galerkin method
  - Discrete (approximated) problem
  - System of algebraic equations
- 4 Finite element model
  - Discretization and (linear) shape functions
  - Lagrange interpolation functions
  - Finite element system of algebraic equations
  - Imposition of the essential boundary conditions
  - Results: analytical and FE solutions

# Motivation and general concepts

### The Finite Element Method (FEM) is

- generally speaking: a powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied sciences;
- mathematically: a generalization of the classical variational (Ritz) and weighted-residual (Galerkin, least-squares, etc.) methods.

# Motivation and general concepts

#### The Finite Element Method (FEM) is

- generally speaking: a powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied sciences;
- mathematically: a generalization of the classical variational (Ritz) and weighted-residual (Galerkin, least-squares, etc.) methods.

#### Motivation

Most of the real problems:

- are defined on domains that are geometrically complex,
- may have different boundary conditions on different portions of the boundary.

# Motivation and general concepts

#### The Finite Element Method (FEM) is

- generally speaking: a powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied sciences;
- mathematically: a generalization of the classical variational (Ritz) and weighted-residual (Galerkin, least-squares, etc.) methods.

#### Motivation

Most of the real problems:

- are defined on domains that are geometrically complex,
- may have different boundary conditions on different portions of the boundary.

Therefore, it is usually impossible (or difficult):

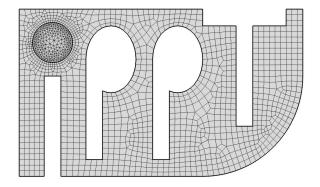
- to find a solution analytically (so one must resort to approximate methods),
- 2 to generate approximation functions required in the traditional variational methods.

An answer to these problems is a **finite-element approach**.

# Motivation and general concepts

### Main concept of FEM

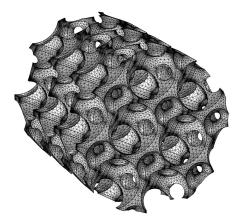
A problem domain can be viewed as an assemblage of simple geometric shapes, called **finite elements**, for which it is possible to systematically generate the approximation functions.



# Motivation and general concepts

### Main concept of FEM

A problem domain can be viewed as an assemblage of simple geometric shapes, called **finite elements**, for which it is possible to systematically generate the approximation functions.



# Major steps of finite element analysis

**1 Discretization of the domain** into a set of finite elements (mesh generation).

- **Discretization of the domain** into a set of finite elements (mesh generation).
- **2** Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).

- **Discretization of the domain** into a set of finite elements (mesh generation).
- Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).
- **Development of the finite element model** of the problem using its weighted-integral or weak form. The finite element model consists of a set of algebraic equations among the unknown parameters (*degrees of freedom*) of the element.

- **Discretization of the domain** into a set of finite elements (mesh generation).
- Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).
- Development of the finite element model of the problem using its weighted-integral or weak form. The finite element model consists of a set of algebraic equations among the unknown parameters (degrees of freedom) of the element.
- 4 Assembly of finite elements to obtain the global system (i.e., for the total problem) of algebraic equations – for the unknown global degrees of freedom.

- **Discretization of the domain** into a set of finite elements (mesh generation).
- Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).
- Development of the finite element model of the problem using its weighted-integral or weak form. The finite element model consists of a set of algebraic equations among the unknown parameters (degrees of freedom) of the element.
- Assembly of finite elements to obtain the global system (i.e., for the total problem) of algebraic equations – for the unknown global degrees of freedom.
- 5 Imposition of essential boundary conditions.

- **Discretization of the domain** into a set of finite elements (mesh generation).
- Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).
- Development of the finite element model of the problem using its weighted-integral or weak form. The finite element model consists of a set of algebraic equations among the unknown parameters (degrees of freedom) of the element.
- Assembly of finite elements to obtain the global system (i.e., for the total problem) of algebraic equations – for the unknown global degrees of freedom.
- 5 Imposition of essential boundary conditions.
- **Solution of the system of algebraic equations** to find (approximate) values in the global degrees of freedom.

- **Discretization of the domain** into a set of finite elements (mesh generation).
- Weighted-integral or weak formulation of the differential equation over a typical finite element (subdomain).
- Development of the finite element model of the problem using its weighted-integral or weak form. The finite element model consists of a set of algebraic equations among the unknown parameters (degrees of freedom) of the element.
- Assembly of finite elements to obtain the global system (i.e., for the total problem) of algebraic equations – for the unknown global degrees of freedom.
- Imposition of essential boundary conditions.
- Solution of the system of algebraic equations to find (approximate) values in the global degrees of freedom.
- **7 Post-computation** of solution and quantities of interest.

### **Outline**

#### 1 Introduction

- Motivation and general concepts
- Major steps of finite element analysis

### 2 Strong and weak forms

- Model problem
- Boundary-value problem and the strong form
- The weak form
- Associated variational problem

#### 3 Galerkin method

- Discrete (approximated) problem
- System of algebraic equations

#### 4 Finite element model

- Discretization and (linear) shape functions
- Lagrange interpolation functions
- Finite element system of algebraic equations
- Imposition of the essential boundary conditions
- Results: analytical and FE solutions

# **Model problem**

**(O)DE:** 
$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\alpha(x) \frac{\mathrm{d}u(x)}{\mathrm{d}x}\right) + \gamma(x)u(x) = f(x)$$
 for  $x \in (a,b)$ 

- $\alpha(x)$ ,  $\gamma(x)$ , f(x) are the known data of the problem: the first two quantities result from the *material properties* and *geometry* of the problem whereas the third one depends on *source* or *loads*,
- u(x) is the solution to be determined; it is also called dependent variable of the problem (with x being the independent variable).

# **Model problem**

**(O)DE:** 
$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\alpha(x) \frac{\mathrm{d}u(x)}{\mathrm{d}x}\right) + \gamma(x)u(x) = f(x)$$
 for  $x \in (a,b)$ 

- $lacktriangleq \alpha(x), \gamma(x), f(x)$  are the known data of the problem,
- $\mathbf{u}(x)$  is the solution to be determined; it is also called **dependent** variable of the problem (with x being the **independent** variable).

The domain of this 1D problem is an interval (a,b); the points x=a and x=b are the boundary points where **boundary conditions** are imposed, for examples, as follows

BCs: 
$$\begin{cases} \left(q(a) \, n_x(a) = \right) - \alpha(a) \, \frac{\mathrm{d}u}{\mathrm{d}x} \, (a) = \hat{q} \,, & \text{(Neumann b.c.)} \\ u(b) = \hat{u} \,. & \text{(Dirichlet b.c.)} \end{cases}$$

- $\hat{q}$  and  $\hat{u}$  are the given boundary values,
- $n_x$  is the component of the outward unit vector normal to the boundary. In the 1D case there is only one component and:  $n_x(a) = -1$ ,  $n_x(b) = +1$ .

# Model problem

**(O)DE:** 
$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(\alpha(x) \frac{\mathrm{d}u(x)}{\mathrm{d}x}\right) + \gamma(x) u(x) = f(x)$$
 for  $x \in (a,b)$ 

BCs: 
$$\begin{cases} \left(q(a)\,n_x(a)=\right)-\alpha(a)\;\frac{\mathrm{d} u}{\mathrm{d} x}\,(a)=\hat{q}\;,\quad\text{(Neumann b.c.)}\\ u(b)=\hat{u}\;.\quad\text{(Dirichlet b.c.)} \end{cases}$$

#### Moreover:

- $lackbox{ } q(x) \equiv lpha(x) \; rac{\mathrm{d} u(x)}{\mathrm{d} x}$  is the so-called **secondary variable** specified on the boundary by the **Neumann boundary condition** also known as the **second kind** or **natural** boundary condition,
- $\mathbf{u}(x)$  is the **primary variable** specified on the boundary by the Dirichlet boundary condition also known as the first kind or essential boundary condition.

# **Examples of different physics problems**

| u (primary var.)           | $\alpha$ (material data) | f (source, load)  | q (secondary var.) |
|----------------------------|--------------------------|-------------------|--------------------|
| Heat transfer              |                          |                   |                    |
| temperature                | thermal conductance      | heat generation   | heat               |
| Flow through porous medium |                          |                   |                    |
| fluid-head                 | permeability             | infiltration      | source             |
| Flow through pipes         |                          |                   |                    |
| pressure                   | pipe resistance          | 0                 | source             |
| Flow of viscous fluids     |                          |                   |                    |
| velocity                   | viscosity                | pressure gradient | shear stress       |
| Elastic cables             |                          |                   |                    |
| displacement               | tension                  | transversal force | point force        |
| Elastic bars               |                          |                   |                    |
| displacement               | axial stiffness          | axial force       | point force        |
| Torsion of bars            |                          |                   |                    |
| angle of twist             | shear stiffness          | 0                 | torque             |
| Electrostatics             |                          |                   |                    |
| electric potential         | dielectric constant      | charge density    | electric flux      |
|                            |                          |                   |                    |

# **Boundary Value Problem and the strong form**

#### Let:

- $\square$   $\Omega = (a,b)$  be an open set (an open interval in case of 1D problems);
- lacksquare  $\Gamma$  be the boundary of  $\Omega$ , that is,  $\Gamma = \{a, b\}$ ;
- $\Gamma = \Gamma_q \cup \Gamma_u$  where, e.g.,  $\Gamma_q = \{a\}$  and  $\Gamma_u = \{b\}$  are disjoint parts of the boundary (i.e.,  $\Gamma_q \cap \Gamma_u = \emptyset$ ) relating to the Neumann and Dirichlet boundary conditions, respectively;
- (the data of the problem):  $f: \Omega \to \Re$ ,  $\alpha: \Omega \to \Re$ ,  $\gamma: \Omega \to \Re$ ;
- (the values prescribed on the boundary):  $\hat{q}:\Gamma_q \to \Re$ ,  $\hat{u}:\Gamma_u \to \Re$ .

# **Boundary Value Problem and the strong form**

#### Let:

- $\Omega = (a,b)$  be an open set (an open interval in case of 1D problems);
- lacksquare  $\Gamma$  be the boundary of  $\Omega$ , that is,  $\Gamma = \{a, b\}$ ;
- $\Gamma = \Gamma_q \cup \Gamma_u$  where, e.g.,  $\Gamma_q = \{a\}$  and  $\Gamma_u = \{b\}$  are disjoint parts of the boundary (i.e.,  $\Gamma_q \cap \Gamma_u = \emptyset$ ) relating to the Neumann and Dirichlet boundary conditions, respectively;
- (the data of the problem):  $f: \Omega \to \Re$ ,  $\alpha: \Omega \to \Re$ ,  $\gamma: \Omega \to \Re$ ;
- (the values prescribed on the boundary):  $\hat{q}:\Gamma_q \to \Re$ ,  $\hat{u}:\Gamma_u \to \Re$ .

#### **Boundary Value Problem (BVP)**

Find u = ? satisfying

**differential eq.:** 
$$-(\alpha u')' + \gamma u = f$$
 in  $\Omega = (a, b)$ ,

**Neumann b.c.:** 
$$\alpha u' n_x = \hat{q}$$
 on  $\Gamma_q = \{a\}$ ,

**Dirichlet b.c.:** 
$$u = \hat{u}$$
 on  $\Gamma_u = \{b\}$ .

# **Boundary Value Problem and the strong form**

#### **Boundary Value Problem (BVP)**

Find u = ? satisfying

differential eq.: 
$$-(\alpha u')' + \gamma u = f$$
 in  $\Omega = (a, b)$ ,

**Neumann b.c.:** 
$$\alpha u' n_x = \hat{q}$$
 on  $\Gamma_q = \{a\}$ ,

**Dirichlet b.c.:** 
$$u = \hat{u}$$
 on  $\Gamma_u = \{b\}$ .

### **Definition (Strong form)**

The classical strong form of a boundary-value problem consists of:

- the differential equation of the problem,
- the **Neumann boundary conditions**, i.e., the natural conditions imposed on the secondary dependent variable (which involves the first derivative of the dependent variable).

The Dirichlet (essential) boundary conditions must be satisfied a priori.

Derivation of weak form and the equivalence to strong form

Derivation of the equivalent weak form consists of the three steps presented below.

- Write the **weighted-residual statement** for the equation.
- 2 Trade differentiation from u to  $\delta u$  using **integration by parts**.
- **3** Use the Neumann boundary condition  $(\alpha u' n_x = \hat{q} \text{ on } \Gamma_q)$  and the property of test function  $(\delta u = 0 \text{ on } \Gamma_u)$  for the boundary term.

Derivation of weak form and the equivalence to strong form

Derivation of the equivalent weak form consists of the three steps presented below.

Write the weighted-residual statement for the equation.

$$\int_{a}^{b} \left[ -\left(\alpha u'\right)' + \gamma u - f \right] \delta u \, \mathrm{d}x = 0.$$

Here:

- $\delta u$  (the weighting function) belongs to the space of **test functions**,
- *u* (the solution) belongs to the space of **trial functions**.
- **2** Trade differentiation from u to  $\delta u$  using **integration by parts**.
- **3** Use the Neumann boundary condition  $(\alpha u' n_x = \hat{q} \text{ on } \Gamma_q)$  and the property of test function  $(\delta u = 0 \text{ on } \Gamma_u)$  for the boundary term.

Derivation of weak form and the equivalence to strong form

Write the **weighted-residual** statement for the equation:

$$\int_{a}^{b} \left[ -\left(\alpha u'\right)' + \gamma u - f \right] \delta u \, \mathrm{d}x = 0.$$

Here:

- $\bullet$   $\delta u$  (the weighting function) belongs to the space of **test functions**,
- u (the solution) belongs to the space of trial functions.
- Trade differentiation from u to  $\delta u$  using **integration by parts**:

$$\left[-\alpha u' \delta u\right]_a^b + \int \left[\alpha u' \delta u' + \gamma u \delta u - f \delta u\right] dx = 0.$$

Here, the boundary term may be written as

$$\left[ -\alpha u' \delta u \right]_a^b = \left[ -\alpha u' \delta u \right]_{x=b} - \left[ -\alpha u' \delta u \right]_{x=a}$$

$$= \left[ -\alpha u' n_x \delta u \right]_{x=b} + \left[ -\alpha u' n_x \delta u \right]_{x=a} = \left[ -\alpha u' n_x \delta u \right]_{x=\{a,b\}}.$$

Derivation of weak form and the equivalence to strong form

Write the *weighted-residual* statement for the equation:

$$\int_{a}^{b} \left[ -\left(\alpha u'\right)' + \gamma u - f \right] \delta u \, \mathrm{d}x = 0.$$

**2** Trade differentiation from u to  $\delta u$  using **integration by parts**:

$$\left[-\alpha u' \delta u\right]_a^b + \int_a^b \left[\alpha u' \delta u' + \gamma u \delta u - f \delta u\right] dx = 0.$$

The integration by parts weakens the differentiability requirement for the trial functions u (i.e., for the solution).

**3** Use the Neumann boundary condition  $(\alpha u' n_x = \hat{q} \text{ on } \Gamma_a)$  and the property of test function ( $\delta u = 0$  on  $\Gamma_u$ ) for the boundary term

$$\left[-\alpha u' n_x \delta u\right]_{x=\{a,b\}} = \left[-\underbrace{\alpha u' n_x}_{\hat{a}} \delta u\right]_{x=a} + \left[-\alpha u' n_x \underbrace{\delta u}_{0}\right]_{x=b} = \left[-\hat{q} \delta u\right]_{x=a}.$$

#### Derivation of weak form and the equivalence to strong form

- Write the **weighted-residual** statement for the equation.
- **2** Trade differentiation from u to  $\delta u$  using **integration by parts**.

The integration by parts weakens the differentiability requirement for the trial functions u (i.e., for the solution).

**3** Use the Neumann boundary condition  $(\alpha u' n_x = \hat{q} \text{ on } \Gamma_q)$  and the property of test function  $(\delta u = 0 \text{ on } \Gamma_u)$  for the boundary term. In this way, the **weak (variational) form** is obtained.

#### Weak form

$$\left[ -\hat{q}\,\delta u \right]_{x=a} + \int_{a}^{b} \left[ \alpha\,u'\,\delta u' + \gamma\,u\,\delta u - f\,\delta u \right] \mathrm{d}x = 0.$$

The weak form is *mathematically equivalent* to the strong one: if u is a solution to the strong (local, differential) formulation of a BVP, it also satisfies the corresponding weak (global, integral) formulation for any  $\delta u$  (admissible, i.e., sufficiently smooth and  $\delta u = 0$  on  $\Gamma_u$ ).

#### Additional requirements and remarks

The essential boundary conditions must be explicitly satisfied by the trial functions:  $u = \hat{u}$  on  $\Gamma_u$ . (In case of displacement formulations of many mechanical and structural engineering problems this is called **kinematic admissibility requirement**.)

#### Additional requirements and remarks

- The essential boundary conditions must be explicitly satisfied by the trial functions:  $u = \hat{u}$  on  $\Gamma_u$ . (In case of displacement formulations of many mechanical and structural engineering problems this is called **kinematic admissibility requirement**.)
- Consequently, the test functions must satisfy the adequate homogeneous essential boundary conditions:  $\delta u = 0$  on  $\Gamma_u$ .

#### Additional requirements and remarks

- The essential boundary conditions must be explicitly satisfied by the trial functions:  $u = \hat{u}$  on  $\Gamma_u$ . (In case of displacement formulations of many mechanical and structural engineering problems this is called **kinematic admissibility requirement**.)
- Consequently, the test functions must satisfy the adequate homogeneous essential boundary conditions:  $\delta u = 0$  on  $\Gamma_u$ .
- The trial functions u (and test functions,  $\delta u$ ) need only to be continuous. (Remember that in the case of strong form the continuity of the first derivative of solution u was required.)

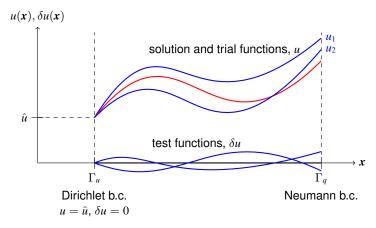
Additional requirements and remarks

- The essential boundary conditions must be explicitly satisfied by the trial functions:  $u = \hat{u}$  on  $\Gamma_u$ . (In case of displacement formulations of many mechanical and structural engineering problems this is called **kinematic admissibility requirement**.)
- Consequently, the test functions must satisfy the adequate homogeneous essential boundary conditions:  $\delta u = 0$  on  $\Gamma_u$ .
- The trial functions u (and test functions,  $\delta u$ ) need only to be continuous. (Remember that in the case of strong form the continuity of the first derivative of solution u was required.)

#### Remarks:

- The strong form can be derived from the corresponding weak formulation if more demanding assumptions are taken for the smoothness of trial functions (i.e., one-order higher differentiability).
- In variational methods, any test function is a variation defined as the difference between any two trial functions. Since any trial function satisfy the essential boundary conditions, the requirement that  $\delta u=0$  on  $\Gamma_u$  follows immediately.

#### **Test and trial functions**



 $u_1$ ,  $u_2$  – arbitrary trial functions

$$\delta u = u_1 - u_2$$
 and  $\begin{cases} u_1 = \hat{u} & \text{on } \Gamma_u \\ u_2 = \hat{u} & \text{on } \Gamma_u \end{cases} \rightarrow \delta u = 0$  on  $\Gamma_u$ 

- U, W are functional spaces. The first one is called the space of solution (or trial functions), the other one is the space of test functions (or weighting functions),
- $\blacksquare$   $\mathcal{A}$  is a **bilinear form** defined on  $\mathcal{U} \times \mathcal{W}$ ,
- lacksquare  $\mathcal{F}$  is a **linear form** defined on  $\mathcal{W}$ ,
- lacksquare  $\mathcal P$  is a certain **functional** defined on  $\mathcal U$ .

- \$\mathcal{U}\$, \$\mathcal{W}\$ are functional spaces. The first one is called the space of solution (or trial functions), the other one is the space of test functions (or weighting functions),
- $\blacksquare$   $\mathcal{A}$  is a **bilinear form** defined on  $\mathcal{U} \times \mathcal{W}$ ,
- $\blacksquare$   $\mathcal{F}$  is a **linear form** defined on  $\mathcal{W}$ ,
- lacksquare  $\mathcal P$  is a certain **functional** defined on  $\mathcal U$ .

The weak form is equivalent to a variational problem!

#### Weak form vs. variational problem

Weak formulation: Find  $u \in \mathcal{U}$  so that  $\mathcal{A}(u, \delta u) = \mathcal{F}(\delta u) \ \forall \ \delta u \in \mathcal{W}$ .

Variational problem: Find  $u \in \mathcal{U}$  which minimizes  $\mathcal{P}(u)$ .

- \$\mathcal{U}\$, \$\mathcal{W}\$ are functional spaces. The first one is called the space of solution (or trial functions), the other one is the space of test functions (or weighting functions),
- $\blacksquare$   $\mathcal{A}$  is a **bilinear form** defined on  $\mathcal{U} \times \mathcal{W}$ ,
- $\blacksquare$   $\mathcal{F}$  is a **linear form** defined on  $\mathcal{W}$ ,
- $\blacksquare$   $\mathcal{P}$  is a certain **functional** defined on  $\mathcal{U}$ .

The weak form is equivalent to a variational problem!

#### Weak form vs. variational problem

Weak formulation: Find  $u \in \mathcal{U}$  so that  $\mathcal{A}(u, \delta u) = \mathcal{F}(\delta u) \ \forall \ \delta u \in \mathcal{W}$ .

Variational problem: Find  $u \in \mathcal{U}$  which minimizes  $\mathcal{P}(u)$ .

#### **Example (for the model problem)**

$$\mathcal{A}(u,\delta u) = \int_{a}^{b} \left[ \alpha u' \, \delta u' + \gamma u \, \delta u \right] dx, \qquad \mathcal{F}(\delta u) = \int_{a}^{b} f \, \delta u \, dx + \left[ \hat{q} \, \delta u \right]_{x=a}.$$

and the principle of the minimum total potential energy

#### Weak form vs. variational problem

Weak formulation: Find  $u \in \mathcal{U}$  so that  $\mathcal{A}(u, \delta u) = \mathcal{F}(\delta u) \ \forall \ \delta u \in \mathcal{W}$ . Variational problem: Find  $u \in \mathcal{U}$  which minimizes  $\mathcal{P}(u)$ .

The weak form (or the variational problem) is the statement of the principle of the minimum total potential energy:

$$\delta \mathcal{P}(u) = 0$$
,  $\delta \mathcal{P}(u) = \mathcal{A}(u, \delta u) - \mathcal{F}(\delta u)$ 

- $\bullet$  is now the variational symbol,
- $\blacksquare$   $\mathcal{P}(u)$  is the potential energy

and the principle of the minimum total potential energy

#### Weak form vs. variational problem

Weak formulation: Find  $u \in \mathcal{U}$  so that  $\mathcal{A}(u, \delta u) = \mathcal{F}(\delta u) \ \forall \ \delta u \in \mathcal{W}$ .

Variational problem: Find  $u \in \mathcal{U}$  which minimizes  $\mathcal{P}(u)$ .

The weak form (or the variational problem) is the statement of the **principle of the minimum total potential energy**:

$$\delta \mathcal{P}(u) = 0$$
,  $\delta \mathcal{P}(u) = \mathcal{A}(u, \delta u) - \mathcal{F}(\delta u)$ 

- lacksquare  $\delta$  is now the **variational symbol**,
- $\mathbb{P}(u)$  is the **potential energy** defined by the following **quadratic** functional

$$\mathcal{P}(u) = \frac{1}{2}\mathcal{A}(u,u) - \mathcal{F}(u).$$

This definition holds only when the bilinear form is symmetric since:

$$\frac{1}{2}\,\delta\mathcal{A}(u,u) = \frac{1}{2}\Big(\underbrace{\mathcal{A}(\delta u,u)}_{\mathcal{A}(u,\delta u)} + \mathcal{A}(u,\delta u)\Big) = \mathcal{A}(u,\delta u)\,, \qquad \delta\mathcal{F}(u) = \mathcal{F}(\delta u)\,.$$

and the principle of the minimum total potential energy

The weak form (or the variational problem) is the statement of the **principle of the minimum total potential energy**:

$$\delta \mathcal{P}(u) = 0$$
,  $\delta \mathcal{P}(u) = \mathcal{A}(u, \delta u) - \mathcal{F}(\delta u)$ 

- $\bullet$  is now the variational symbol,
- $\blacksquare$   $\mathfrak{P}(u)$  is the **potential energy** defined by the following **quadratic** functional

$$\mathcal{P}(u) = \frac{1}{2}\mathcal{A}(u, u) - \mathcal{F}(u).$$

#### **Example (for the model problem)**

$$\mathcal{P}(u) = \frac{1}{2}\mathcal{A}(u, u) - \mathcal{F}(u) = \int_{a}^{b} \left[\frac{\alpha}{2} \left(u'\right)^{2} + \frac{\gamma}{2} u^{2} - f u\right] dx - \left[\hat{q} u\right]_{x=a},$$

$$\delta \mathcal{P}(u) = \mathcal{A}(u, \delta u) - \mathcal{F}(\delta u) = \int_{a}^{b} \left[ \alpha u' \delta u' + \gamma u \delta u - f \delta u \right] dx - \left[ \hat{q} \delta u \right]_{x=a}.$$

#### **Outline**

#### 1 Introduction

- Motivation and general concepts
- Major steps of finite element analysis

#### 2 Strong and weak forms

- Model problem
- Boundary-value problem and the strong form
- The weak form
- Associated variational problem

#### 3 Galerkin method

- Discrete (approximated) problem
- System of algebraic equations

#### 4 Finite element model

- Discretization and (linear) shape functions
- Lagrange interpolation functions
- Finite element system of algebraic equations
- Imposition of the essential boundary conditions
- Results: analytical and FE solutions

Discrete (approximated) problem

If the problem is *well-posed* one can try to find an **approximated solution**  $u_h$  by solving the so-called **discrete problem** which is an approximation of the corresponding variational problem.

#### Discrete (approximated) problem

Find 
$$u_h \in \mathcal{U}_h$$
 so that  $\mathcal{A}_h(u_h, \delta u_h) = \mathcal{F}_h(\delta u_h) \quad \forall \, \delta u_h \in \mathcal{W}_h$ .

#### Here:

- $\mathcal{U}_h$  is a finite-dimension space of functions called **approximation space** whereas  $u_h$  is the **approximate solution** (i.e., *approximate* to the *original* problem).
- $\delta u_h$  are discrete test functions from the discrete test space  $\mathcal{W}_h$ . In the Galerkin method  $\mathcal{W}_h = \mathcal{U}_h$ . (In general,  $\mathcal{W}_h \neq \mathcal{U}_h$ .)
- $\blacksquare$   $\mathcal{A}_h$  is an approximation of the bilinear form  $\mathcal{A}$ .
- $\blacksquare$   $\mathcal{F}_h$  is an approximation of the linear form  $\mathcal{F}$ .

The interpolation and system of algebraic equations

In the Galerkin method (W = U) the same shape functions,  $\phi_i(x)$ , are used to *interpolate* the approximate solution as well as the (discrete) test functions:

$$u_h(x) = \sum_{j=1}^N \theta_j \, \phi_j(x) \,, \qquad \delta u_h(x) = \sum_{i=1}^N \delta \theta_i \, \phi_i(x) \,.$$

Here,  $\theta_i$  are called the **degrees of freedom**.

The interpolation and system of algebraic equations

$$u_h(x) = \sum_{j=1}^N \theta_j \, \phi_j(x) \,, \qquad \delta u_h(x) = \sum_{i=1}^N \delta \theta_i \, \phi_i(x) \,.$$

Using this **interpolation for the approximated problem** leads to a system of algebraic equations (as described below).

■ The left-hand and right-hand sides of the problem equation yield:

$$\mathcal{A}_h(u_h, \delta u_h) = \sum_{i=1}^N \sum_{j=1}^N \mathcal{A}_h(\phi_j, \phi_i) \; \theta_j \, \delta \theta_i = \sum_{i=1}^N \sum_{j=1}^N A_{ij} \; \theta_j \, \delta \theta_i \,,$$

$$\mathcal{F}_h(\delta u_h) = \sum_{i=1}^N \mathcal{F}_h(\phi_i) \; \delta \theta_i = \sum_{i=1}^N F_i \, \delta \theta_i \,,$$

where the (bi)linearity property is used, and the **coefficient matrix** ("stiffness" matrix) and **right-hand-side vector** are defined as follows:

$$A_{ij} = \mathcal{A}_h(\phi_j, \phi_i), \qquad F_i = \mathcal{F}_h(\phi_i).$$

The interpolation and system of algebraic equations

$$u_h(x) = \sum_{j=1}^N \theta_j \, \phi_j(x) \,, \qquad \delta u_h(x) = \sum_{i=1}^N \delta \theta_i \, \phi_i(x) \,.$$

Using this interpolation for the approximated problem leads to a system of algebraic equations (as described below).

The coefficient matrix ("stiffness" matrix) and right-hand-side vectors.

The coefficient matrix ("stiffness" matrix) and right-hand-side vector are defined as follows:

$$A_{ij} = \mathcal{A}_h(\phi_j, \phi_i), \qquad F_i = \mathcal{F}_h(\phi_i).$$

Now, the approximated problem may be written as:

$$\sum_{i=1}^{N} \sum_{i=1}^{N} \left[ A_{ij} \ \theta_j - F_i \right] \delta \theta_i = 0 \quad \forall \, \delta \theta_i.$$

The interpolation and system of algebraic equations

$$u_h(x) = \sum_{j=1}^N \theta_j \, \phi_j(x) \,, \qquad \delta u_h(x) = \sum_{i=1}^N \delta \theta_i \, \phi_i(x) \,.$$

Using this **interpolation for the approximated problem** leads to a system of algebraic equations (as described below).

The coefficient matrix ("stiffness" matrix) and right-hand-side vector are defined as follows:

$$A_{ij} = \mathcal{A}_h(\phi_j, \phi_i), \qquad F_i = \mathcal{F}_h(\phi_i).$$

Now, the approximated problem may be written as:

$$\sum_{i=1}^{N} \sum_{i=1}^{N} \left[ A_{ij} \ \theta_{j} - F_{i} \right] \delta \theta_{i} = 0 \quad \forall \, \delta \theta_{i}.$$

■ It is (always) true if the expression in brackets equals zero which gives the **system of algebraic equations** (for  $\theta_i = ?$ ):

$$\sum_{i=1}^{N} A_{ij} \ \theta_j = F_i \, .$$

The interpolation and system of algebraic equations

$$u_h(x) = \sum_{j=1}^N \theta_j \, \phi_j(x) \,, \qquad \delta u_h(x) = \sum_{j=1}^N \delta \theta_j \, \phi_j(x) \,.$$

Using this interpolation for the approximated problem leads to the following system of algebraic equations (for  $\theta_i = ?$ ):

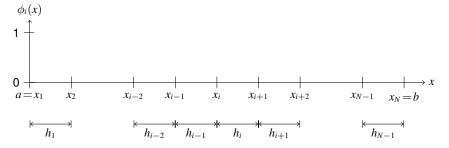
$$\sum_{i=1}^N A_{ij} \; \theta_j = F_i \,, \quad ext{where} \quad A_{ij} = \mathcal{A}_h(\phi_j, \phi_i) \,, \quad F_i = \mathcal{F}_h(\phi_i) \,.$$

#### **Example (for the model problem)**

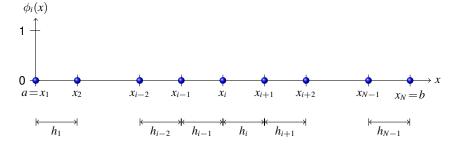
$$A_{ij} = \mathcal{A}_h(\phi_j, \phi_i) = \int_a^b \left[ \alpha \, \phi_i' \, \phi_j' + \gamma \, \phi_i \, \phi_j \right] \mathrm{d}x \,,$$
$$F_i = \mathcal{F}_h(\phi_i) = \int_a^b f \, \phi_i \, \mathrm{d}x + \left[ \hat{q} \, \phi_i \right]_{x=a}.$$

#### **Outline**

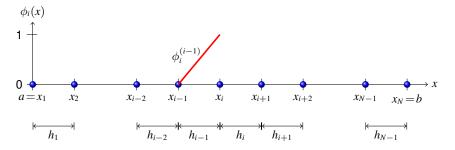
- 1 Introduction
  - Motivation and general concepts
  - Major steps of finite element analysis
- 2 Strong and weak forms
  - Model problem
  - Boundary-value problem and the strong form
  - The weak form
  - Associated variational problem
- 3 Galerkin method
  - Discrete (approximated) problem
  - System of algebraic equations
- 4 Finite element model
  - Discretization and (linear) shape functions
  - Lagrange interpolation functions
  - Finite element system of algebraic equations
  - Imposition of the essential boundary conditions
  - Results: analytical and FE solutions



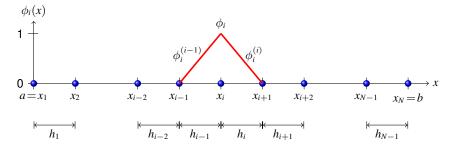
■ The domain interval is divided into (N-1) finite elements (subdomains).



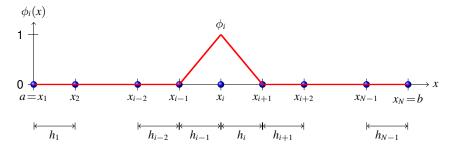
- The domain interval is divided into (N-1) finite elements (subdomains).
- There are *N* **nodes**, each with only 1 **degree of freedom (DOF)**.



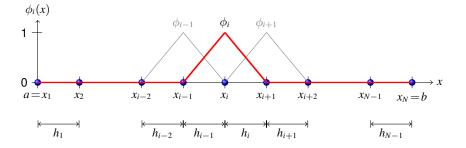
- The domain interval is divided into (N-1) finite elements (subdomains).
- There are *N* **nodes**, each with only 1 **degree of freedom (DOF)**.
- Local (or element) shape function is (most often) defined on an element in this way that it is equal to 1 in a particular DOF and 0 in all the others. So, there are only two *linear* interpolation functions in 1D finite element. Higher-order interpolation functions involve additional nodes (DOF) inside element.



- The domain interval is divided into (N-1) finite elements (subdomains).
- There are *N* **nodes**, each with only 1 **degree of freedom (DOF)**.
- Local (or element) shape function is (most often) defined on an element in this way that it is equal to 1 in a particular DOF and 0 in all the others.
- Global shape function  $\phi_i$  is defined on the whole domain as:
  - local shape functions on (neighbouring) elements sharing DOF *i*,

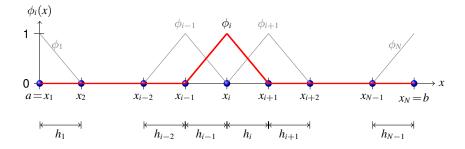


- The domain interval is divided into (N-1) finite elements (subdomains).
- There are *N* **nodes**, each with only 1 **degree of freedom (DOF)**.
- Local (or element) shape function is (most often) defined on an element in this way that it is equal to 1 in a particular DOF and 0 in all the others.
- Global shape function  $\phi_i$  is defined on the whole domain as:
  - local shape functions on (neighbouring) elements sharing DOF *i*,
  - identically equal zero on all other elements.



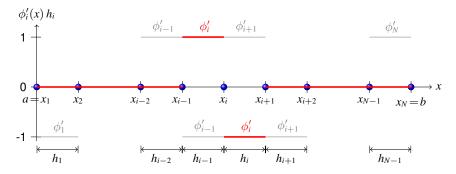
Shape functions for internal nodes (i = 2, ..., (N-1)) are:

$$\phi_i = \begin{cases} \frac{x - x_{i-1}}{h_{i-1}} & \text{for } x \in \Omega_{i-1} \text{,} \\ \frac{x_{i+1} - x}{h_i} & \text{for } x \in \Omega_i \text{,} \\ 0 & \text{otherwise.} \end{cases}$$



Shape functions for boundary nodes (i = 1 or N) are:

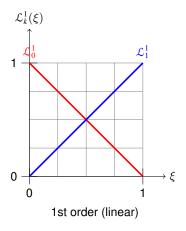
$$\phi_1 = \begin{cases} \frac{x_2 - x}{h_1} & \text{for } x \in \Omega_1 \text{,} \\ 0 & \text{otherwise,} \end{cases} \quad \phi_N = \begin{cases} \frac{x - x_{N-1}}{h_{N-1}} & \text{for } x \in \Omega_{N-1} \text{,} \\ 0 & \text{otherwise.} \end{cases}$$



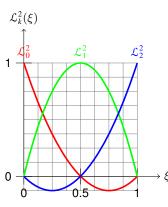
First derivatives of shape functions are discontinuous at interfaces (points) between elements (in the case of linear interpolation they are element-wise constant):

$$\phi_1' = \begin{cases} -\frac{1}{h_1} & \text{for } x \in \Omega_1 \,, \\ 0 & \text{otherwise,} \end{cases} \quad \phi_i' = \begin{cases} \frac{1}{h_{i-1}} & \text{for } x \in \Omega_{i-1} \,, \\ -\frac{1}{h_i} & \text{for } x \in \Omega_i \,, \\ 0 & \text{otherwise.} \end{cases} \quad \phi_N' = \begin{cases} \frac{1}{h_{N-1}} & \text{for } x \in \Omega_{N-1} \,, \\ 0 & \text{otherwise.} \end{cases}$$

## Lagrange interpolation functions



$$\mathcal{L}_0^1(\xi) = 1 - \xi,$$
  
 $\mathcal{L}_1^1(\xi) = \xi,$ 



2nd order (quadratic)

$$\mathcal{L}_0^2(\xi) = (2\xi - 1)(\xi - 1),$$

$$\mathcal{L}_1^2(\xi) = 4\xi(1 - \xi),$$

$$\mathcal{L}_2^2(\xi) = \xi(2\xi - 1).$$

# Finite element system of algebraic equations

Matrix of the system

■ The symmetry of the bilinear form  $\mathcal{A}$  involves the symmetry of the matrix of the FE system of algebraic equations, i.e.,  $A_{ij} = A_{ji}$ .

# Finite element system of algebraic equations

#### Matrix of the system

- The symmetry of the bilinear form A involves the symmetry of the matrix of the FE system of algebraic equations, i.e.,  $A_{ij} = A_{ji}$ .
- A component  $A_{ij}$  is defined as an integral (over the problem domain) of a sum of a product of shape functions,  $\phi_i$  and  $\phi_j$ , and a product of their derivatives,  $\phi_i'$  and  $\phi_j'$ .

# Finite element system of algebraic equations

#### Matrix of the system

- The symmetry of the bilinear form A involves the symmetry of the matrix of the FE system of algebraic equations, i.e.,  $A_{ij} = A_{ji}$ .
- A component  $A_{ij}$  is defined as an integral (over the problem domain) of a sum of a product of shape functions,  $\phi_i$  and  $\phi_j$ , and a product of their derivatives,  $\phi'_i$  and  $\phi'_i$ .
- The product of two shape functions (or their derivatives) is nonzero only on the elements that contain the both corresponding degrees of freedom (since a shape function corresponding to a particular degree of freedom is nonzero only on the elements sharing it).

#### Matrix of the system

- The symmetry of the bilinear form A involves the symmetry of the matrix of the FE system of algebraic equations, i.e.,  $A_{ii} = A_{ii}$ .
- A component  $A_{ij}$  is defined as an integral (over the problem domain) of a sum of a product of shape functions,  $\phi_i$  and  $\phi_j$ , and a product of their derivatives,  $\phi'_i$  and  $\phi'_i$ .
- The product of two shape functions (or their derivatives) is nonzero only on the elements that contain the both corresponding degrees of freedom (since a shape function corresponding to a particular degree of freedom is nonzero only on the elements sharing it).
- Therefore, the integral can be computed as a sum of the integrals defined only over these finite elements that share the both degrees of freedom (since the contribution from all other elements is null):

$$A_{ij} = \sum_{e \in \mathcal{E}} A_{ij}^{(e)} = \sum_{e \in \mathcal{E}(i,j)} A_{ij}^{(e)}.$$

Here:  $\mathcal{E}$  is the set of all finite elements,  $\mathcal{E}(i,j)$  is the set of finite elements that contain the (both) degrees of freedom i and j.

Matrix of the system

$$A_{ij} = \sum_{e \in \mathcal{E}} A_{ij}^{(e)} = \sum_{e \in \mathcal{E}(i,j)} A_{ij}^{(e)}.$$

Here:  $\mathcal{E}$  is the set of all finite elements,  $\mathcal{E}(i,j)$  is the set of finite elements that contain the (both) degrees of freedom i and j.

For a 1D problem approximated by finite elements with linear shape functions the matrix of the system will be *tridiagonal*:

$$A_{ij} = \begin{cases} A_{11}^{(1)} & \text{for } i = j = 1 \text{,} \\ A_{ii}^{(i-1)} + A_{ii}^{(i)} & \text{for } i = j = 2, \dots, (N-1) \text{,} \\ A_{NN}^{(N-1)} & \text{for } i = j = N \text{,} \\ A_{i,i+1}^{(i)} & \text{for } |i - j| = 1 \text{,} \\ 0 & \text{for } |i - j| > 1 \text{.} \end{cases}$$

Matrix of the system

For the model problem the nonzero elements of the matrix are:

$$A_{11} = \int_{x_{1}}^{x_{2}} \left[ \alpha \left( \phi_{1}^{\prime} \right)^{2} + \gamma \phi_{1}^{2} \right] dx = \int_{x_{1}}^{x_{1}+n_{1}} \frac{\alpha + \gamma \left( x_{1} + h_{1} - x \right)^{2}}{h_{1}^{2}} dx,$$

$$A_{ii} = \int_{x_{i-1}}^{x_{i+1}} \left[ \alpha \left( \phi_{i}^{\prime} \right)^{2} + \gamma \phi_{i}^{2} \right] dx = \int_{x_{i}-h_{i-1}}^{x_{i}} \frac{\alpha + \gamma \left( x - x_{i} + h_{i-1} \right)^{2}}{h_{i-1}^{2}} dx$$

$$+ \int_{x_{i}}^{x_{i}+h_{i}} \frac{\alpha + \gamma \left( x_{i} + h_{i} - x \right)^{2}}{h_{i}^{2}} dx, \qquad i = 2, \dots, (N-1),$$

$$A_{NN} = \int_{x_{N-1}}^{x_{N}} \left[ \alpha \left( \phi_{N}^{\prime} \right)^{2} + \gamma \phi_{N}^{2} \right] dx = \int_{x_{N}-h_{N-1}}^{x_{N}} \frac{\alpha + \gamma \left( x - x_{N} + h_{N-1} \right)^{2}}{h_{N-1}^{2}} dx,$$

$$A_{i,(i+1)} = \int_{x_{i}}^{x_{i+1}} \left[ \alpha \phi_{i}^{\prime} \phi_{i+1}^{\prime} + \gamma \phi_{i} \phi_{i+1} \right] dx = \int_{x_{i}}^{x_{i}+h_{i}} \frac{-\alpha + \gamma \left( x_{i} + h_{i} - x \right) \left( x - x_{i} \right)}{h_{i}^{2}} dx,$$

$$i = 1, \dots, (N-1).$$

Matrix of the system

For a homogeneous material, when  $\alpha(x) = \mathrm{const} = \alpha$  and  $\gamma(x) = \mathrm{const} = \gamma$ , the integrals in the formulas for non-zero elements of tridiagonal matrix can be analytically integrated and the these non-zero elements are computed as follows:

$$A_{ij} = \begin{cases} \frac{\alpha}{h_1} + \frac{\gamma h_1}{3} & \text{for } i = j = 1 \;, \\ \frac{\alpha}{h_{i-1}} + \frac{\gamma h_{i-1}}{3} + \frac{\alpha}{h_i} + \frac{\gamma h_i}{3} & \text{for } i = j = 2, \dots, (N-1) \;, \\ \frac{\alpha}{h_{N-1}} + \frac{\gamma h_{N-1}}{3} & \text{for } i = j = N \;, \\ -\frac{\alpha}{h_i} + \frac{\gamma h_i}{6} & \text{for } |i - j| = 1 \;, \\ 0 & \text{for } |i - j| > 1 \;. \end{cases}$$

Right-hand-side vector

The element *i* of the right-hand-side vector is computed as:

$$F_i = \sum_{e \in \mathcal{E}} F_i^{(e)} = \sum_{e \in \mathcal{E}(i)} F_i^{(e)}.$$

 $\mathcal{E}$  is the set of all finite elements,  $\mathcal{E}(i)$  is the set of finite elements that contain the degree of freedom i.

Right-hand-side vector

The element *i* of the right-hand-side vector is computed as:

$$F_i = \sum_{e \in \mathcal{E}} F_i^{(e)} = \sum_{e \in \mathcal{E}(i)} F_i^{(e)}.$$

 $\mathcal{E}$  is the set of all finite elements,  $\mathcal{E}(i)$  is the set of finite elements that contain the degree of freedom i.

For the considered model problem the r.h.s. vector is computed as follows:

$$F_{1} = \int_{x_{1}}^{x_{2}} f \phi_{1} dx + \left[\hat{q} \phi_{1}\right]_{x=x_{1}} = \int_{x_{1}}^{x_{1}+h_{1}} \frac{f(x_{1} + h_{1} - x)}{h_{1}} dx + \hat{q},$$

$$F_{i} = \int_{x_{i-1}}^{x_{i+1}} f \phi_{i} dx = \int_{x_{i}-h_{i-1}}^{x_{i}} \frac{f(x - x_{i} + h_{i-1})}{h_{i-1}} dx + \int_{x_{i}}^{x_{i}+h_{i}} \frac{f(x_{i} + h_{i} - x)}{h_{i}} dx, \quad i = 2, \dots, (N-1),$$

 $F_N = ?$  (to be computed as a reaction to the essential b.c. imposed at this node)

Right-hand-side vector

The element *i* of the right-hand-side vector is computed as:

$$F_i = \sum_{e \in \mathcal{E}} F_i^{(e)} = \sum_{e \in \mathcal{E}(i)} F_i^{(e)}.$$

 $\mathcal{E}$  is the set of all finite elements,  $\mathcal{E}(i)$  is the set of finite elements that contain the degree of freedom i.

Finally, for the model problem with a uniform source (load), i.e., when f(x) = const = f, the elements of r.h.s. vector are:

$$F_i = \begin{cases} \frac{f\,h_1}{2} + \hat{q} & \text{for } i = 1\,,\\ \frac{f\left(h_{i-1} + h_i\right)}{2} & \text{for } i = 2, \dots, (N-1)\,,\\ F_N = ? & \text{for } i = N \text{ (a reaction to the essential b.c.)}. \end{cases}$$

### Imposition of the essential boundary conditions

In general, the assembled matrix  $[A_{ij}]$  is *singular* and the system of algebraic equations is undetermined. To make it solvable **the essential boundary conditions must be imposed**.

# Imposition of the essential boundary conditions

In general, the assembled matrix  $[A_{ii}]$  is singular and the system of algebraic equations is undetermined. To make it solvable the essential boundary conditions must be imposed.

Let  $\mathcal{B}$  be the set of all degrees of freedom, where the essential boundary conditions are applied, that is, for  $n \in \mathcal{B}$ :  $\theta_n = \hat{\theta}_n$ , where  $\hat{\theta}_n$  is a known value. In practice, the essential BCs are imposed as described below.

Compute a new r.h.s. vector

$$\tilde{F}_i = F_i - \sum_{n \in \mathfrak{B}} A_{in} \, \hat{\theta}_n \quad \text{for } i = 1, \dots, N.$$

- Set  $\tilde{F}_n = \hat{\theta}_n$ .
- Set  $A_{nn} = 1$  and all other components in the *n*-th row and *n*-th column to zero, i.e.,  $\tilde{A}_{ni} = \tilde{A}_{in} = \delta_{in}$  for  $i = 1, \dots, N$ .
- Now, the new (sightly modified) system of equations  $\left[ \tilde{A}_{ij} \, \theta_i = \tilde{F}_j \, \right]$  is solved for  $\theta_i$ .
- Finally, reactions (loads, forces) at "Dirichlet nodes" can be computed as

$$F_n = \sum_{i=1}^N A_{ni} \, \theta_i \, .$$

Introduction

For the model problem the essential b.c. are imposed only in the last node (i.e., the *N*-th DOF), where a known value  $\hat{\theta}_N$  is given, so the modified matrix and r.h.s. vector can be formally written as follows:

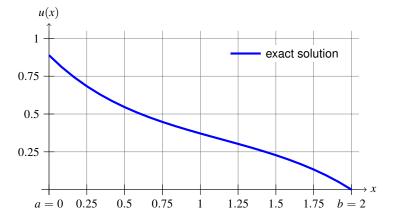
$$\begin{split} \tilde{A}_{ij} &= \begin{cases} A_{ij} & \text{for } i,j=1,\ldots,(N-1)\,,\\ \delta_{Nj} & \text{for } i=N,\ j=1,\ldots,N\,,\\ \delta_{iN} & \text{for } i=1,\ldots,N,\ j=N\,, \end{cases} \\ \tilde{F}_i &= \begin{cases} F_i - A_{iN}\,\hat{\theta}_N & \text{for } i=1,\ldots,(N-1)\,,\\ \hat{\theta}_N & \text{for } i=N\,. \end{cases} \end{split}$$

After the solution of the modified system, the reaction may be computed:

$$F_N = \sum_{i=1}^N A_{Ni} \, \theta_i = A_{N,(N-1)} \, \theta_{N-1} + A_{NN} \, \hat{\theta}_N \,.$$

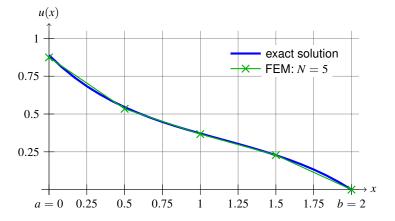
### Results: analytical and FE solutions

$$\alpha(x) = 1,$$
  $\gamma = 3,$   $f(x) = 1,$   $a = 0,$   $q(0) = \hat{q} = 1,$   $b = 2,$   $u(2) = \hat{u} = 0.$ 



### Results: analytical and FE solutions

$$\alpha(x) = 1,$$
  $\gamma = 3,$   $f(x) = 1,$   $a = 0,$   $q(0) = \hat{q} = 1,$   $b = 2,$   $u(2) = \hat{u} = 0.$ 



### Results: analytical and FE solutions

$$\alpha(x) = 1,$$
  $\gamma = 3,$   $f(x) = 1,$   $a = 0,$   $q(0) = \hat{q} = 1,$   $b = 2,$   $u(2) = \hat{u} = 0.$ 

